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ABSTRACT 
The dispersion of axisymmetric waves in thermomicrostretch elastic plate subjected to stress free 
conditions is investigated in the context of Green and Lindsay (G-L) theory of thermoelasticity. 
Mathematical modeling of the problem of obtaining dispersion curves leads to coupled differential 
equations. The model has been simplified by using Helmholtz decomposition technique and the 
resulting equations have been solved by using variable separable method to obtain the secular 
equations for both symmetric and skew-symmetric wave mode propagation. These vibration modes 
are found to be dispersive and dissipated in character. At short wavelength limits, the secular 
equations reduce to Rayleigh surface wave frequency equations. The dispersion curves and 
attenuation coefficients are computed analytically and presented graphically. 
 
Keywords:  Microstretch, Thermoelastic, Secular equations, Phase velocity, Attenuation 
coefficient. 
 
INTRODUCTION 
 
In classical theory of elasticity, the points of 
the material have translational degrees of 
freedom and the transmission of the load 
across a differential element of the surface is 
described by a force vector only. However, in 
the theory of micropolar elasticity, there is an 
additional degree of freedom characterized by 
rotation of material points, and there is an 
additional kind of stress called couple stress. 
Thus, in the classical theory of elasticity, the 
effect of couple stress is neglected.  
Eringen [1] introduced the theory of 
microstretch elastic solids.This theory is a 
generalization of the theory of micropolar 
elasticity [2]. The material points of 
microstretch solids can stretch and contract 
independently of their translations and 
rotations. Thus, in these solids, the motion is 
characterized by seven degrees of freedom 
namely three for translation, three for rotation 
and one for stretch. 
The transmission of the load across a 
differential element of the surface of a 
microstretch elastic solid is described by a 

force vector, a couple stress vector and a 
microstretch vector. The theory of 
microstretch elastic solid differs from the 
theory of micropolar elasticity in the sense that 
there is an additional degree of freedom called 
stretch and there is an additional kind of stress 
called microstretch vector. The materials like 
porous elastic material filled with gas or 
inviscid fluid, asphalt, composite fibers etc. lie 
in the category of microstretch elastic solids. 
Eringen [3] extended the theory of 
microstretch elastic solids to include heat 
conduction. In the framework of the theory of 
thermomicrostretch elastic solids, Eringen 
established a uniqueness theorem for the 
mixed boundary-initial value problem. The 
theory was illustrated with the solution of one-
dimensional waves and compared with lattice 
dynamical results. The asymptotic behavior of 
solutions and an existence result were 
presented by Bofill and Quintanilla [4].  
 
Singh [5] studied the reflection and refraction 
of plane waves at a liquid/thermomicrostretch 
elastic solid interface. Singh [6] studied 
reflection of plane waves from free surface of 
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microstretch elastic solid. Kumar and Deswal 
[7] studied wave propagation through a 
cylindrical bore contained in a microstretch 
elastic medium. Kumar and Deswal [8] 
examined surface wave propagation through a 
cylindrical bore in a microstretch generalized 
thermoelastic medium without energy 
dissipation. Singh and Kumar [9] discussed 
the problem of reflection and refraction of 
plane waves at an interface between two 
dissimilar micropolar elastic solid half-space 
with stretch. Iesan and Quintanilla [10] 
investigated thermal stresses in microstretch 
elastic plates. Svanadze and Cicco [11] 
analyzed fundamental solution in the theory of 
thermomicrostretch elastic solids. Tomar and 
Garg [12] investigated reflection and 
transmission of waves from a plane interface 
between two microstretch solid half-spaces. 
Iesan and Scalia [13] discussed propagation of 
singular surfaces in thermo-microstretch 

continua with memory. Singh and Tomar [14] 
investigated Rayleigh-Lamb waves in a 
microstretch elastic plate cladded with liquid 
layers. Sharma, Kumar and Sharma [15] 
studied propagation of Rayleigh waves in 
micro-stretch thermoelastic continua under 
inviscid fluid loadings. 
The present investigation is concerned to 
study the dispersion of axisymmetric waves in 
an infinite homogeneous isotropic 
thermomicrostretch elastic plate of finite 
thickness. 
Basic equations  
Following Eringen [16] and Green and 
Lindsay [17], the equations of motion and the 
constitutive relations in a homogeneous 
isotropic generalized thermomicrostretch 
elastic solid in the absence of body forces, 
body couples, stretch force and heat sources 
are given as 
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where K,,,,,  ,

1000 ,,,  b  are material 

constants,   is the density, j is the microinertia, 

0j  is the microinertia of microelements,    ijt  and 

ijm  are the components of stress and couple stress 

tensors respectively, ),,( zr uuuu 


is the 

displacement vector, ),,( zr  


is the 

microrotation vector and  *  is the scalar point 

microstretch function, *
i  is the microstress tensor, 

T is the temperature change, 0T  is uniform 

temperature,
1

)23( tK   , 

2
)23(1 tK    ,

1t
   and 

2t
 are  the 

coefficients of linear thermal expansion and  *K  is 

the coefficient of thermal conductivity , *C  is 
specific heat at constant strain, ij  is 

Kronecker delta, 0  and  1  are thermal 

relaxation times.  The comma notation denotes 
spatial derivatives. 
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Formulation of the problem  
We consider an infinite homogeneous 
isotropic thermally conducting microstretch 
elastic plate bounded by two parallel surfaces 
free of tractions at dz  , z = 0 being the 
midplane of the plate. The circular cylindrical 
co-ordinates (r, , z)  have been used to 

describe the response of the plate of thickness 
2d as shown in Fig.1.The plate is 
axisymmetric with the z-axis as the axis of the 
symmetry.  
We take r – z plane as the plane of incidence.  
For two dimensional problem, we take  
 ),0,( zr uuu 


and )0,,0(  


.              …(8)                                      

 

To facilitate the solution, we introduce the following dimensionless quantities 
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characteristic frequency of the medium. We introduce the potential functions   and     through 
the relations 
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Using equations (8) – (10) in equations (1) - (4) and after suppressing the primes for convenience,  
we obtain 
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Boundary Conditions 
We consider the following mechanical and thermal boundary conditions at surfaces  dz   
3.1.1   Mechanical Conditions 
The non-dimensional mechanical boundary conditions at dz  are given as follows  

0zzt , 0zrt , 0zm , 0*
, z .                                                                                                  …(16)  

3.1.2   Thermal Conditions                                                                                             
The thermal boundary conditions at  dz   are given by  

0,  hTT z .                                                                                                                              …(17)             

where h is the surface heat transfer coefficient . Here h 0 corresponds to thermally insulated 
boundaries and  h  refers to isothermal one.                                                                                                             
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Formal solution of the problem  
We assume the solutions of equations (11) – (15) of the form 
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where   is the circular frequency,   is the wave number and )(0 rJ  and )(1 rJ  are  the Bessel 

functions of order zero and one respectively. 
Using equation (18) in equations (11) - (15) and solving the resulting differential equations, the 

expressions for  ,  , ,T and  *  are obtained as  
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Derivation of the secular equations 
Using the boundary conditions (16) and (17) on the surfaces z =   d of the plate and with the 
help of equations (19) – (23), we obtain a system of ten simultaneous equations. This system of 
ten simultaneous equations has a non-trivial solution if the determinant of the coefficients of 
amplitudes   TBBBBBAAAAA  ,,,,,,,,, 5432154321 vanishes. We obtain the following secular equations 
after applying lengthy algebraic reductions and manipulations. 
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For stress free thermally insulated boundaries )0( h  of the plate. 
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 For stress free isothermal boundaries )( h of the plate. 
where 

2

2
22


 p

bP  ,  )
2

1(2
2

 p
Q  , 22

ii mbf  ,  i = 4,5; 0 biR  , 
p

S
2

 ,  

0U , 
p

ib
V

2
0  

 ,  dmT ii tan ,  i = 1,2,3,4,5 .                          

Here the superscript +1 refers to skew-symmetric and -1 refers to symmetric modes. Equations 
(24) and (25) are the most general dispersion relations involving wave number and phase velocity 
of various modes of propagation in a microstretch generalized thermoelastic plates under the 
considered situations. 
 
Particular cases 
5.1.1   Micropolar elastic plate 
In the absence of stretch effect, we have R = V = U = 031 VV , 12 V  and 02 S , 

3,1),( 221
1

1   iamkiS ii  ; where )1( 222  ca   and the secular equations (24) and (25) can be 
reduced accordingly. 
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Thermoelastic plate 
In the absence of micropolarity effect (K = p = 

0), we have 22
4 bm  , )1(

2
1

2
22

5 


 c
m , and the 

secular equations (24) and (25) for insulated 
and isothermal boundaries can be reduced 
accordingly. 
5.1.3   Elastic plate 
In the absence of thermal effect 
( 0  CK ), the secular equations (24) 
and (25) can be reduced accordingly. 
 
Regions of the secular equation 
In order to explore various regions of the 
secular equations, here we consider the 
equation (24) as an example for the purpose of 
discussion. Depending upon whether 

1m , 2m , 3m , 4m , 5m ,b   being real, purely 

imaginary or complex, the frequency 
equations (24) and (25)are correspondingly 
altered as follows: 
 
Region I  
When the characteristic roots are of the type, 

22 bb   , 22
kkm   , k = 1,2,3,4,5 so that 

bib  , kk im   , k = 1, 2, 3,4,5 are purely 

imaginary or complex numbers. This ensures 
that the superposition of partial waves has the 
property of exponential decay. In this case, the 
secular equations are written from equations 
(24) and (25) by replacing circular tangent 
functions of  km , k = 1, 2, 3,4,5 with 

hyperbolic tangent functions of  k  , k = 1, 2, 

3,4,5. 
 
Region II 
This region is characterized by     < c < 1. In 

this case, we have  22
kkm  ,  k = 1,2,3 ; 

22
kk mm   for k = 4,5  and the secular 

equations can be obtained from equations  (24) 
and (25) by replacing circular tangent 

functions of  km , k = 1, 2, 3 with hyperbolic 

tangent functions of k , k = 1, 2, 3. 

 
Region III 

In this case, the characteristic roots are given 

by   2
km  , k = 1, 2,3,4,5 and the secular 

equations are given by equations (24) and 
(25). 
 
Waves of short wavelength  
Some information on the asymptotic behavior 
is obtainable when the transverse wavelength 
with respect to the thickness of the plate is 
quite small, so that 1d . Then  the  

characteristic roots   kmb,  , k = 1,2,3,4,5  lie 

in Region I and secular equations  (24) and 
(25) can be reduced accordingly. 
 
Numerical results and discussion  
With the view of illustrating theoretical results 
obtained in the preceding sections and 
comparing these in the context of G-L theory 
of thermoelasticity, we now present some 
numerical results. The material chosen for this 
purpose is Magnesium crystal (microstretch 
thermoelastic solid), the physical data for 
which is given below 
Micropolar parameters are 

33 /1074.1 mKg ,   
210 /104.9 mN ,   

   210 /100.4 mN  , 
210 /100.1 mNK   ,   

N910779.0  ,  
219102.0 mj  ,  

219
0 10185.0 mj  . 

Thermal parameters are  
sec10131.6 13

0
 , sec10765.8 13

1
 , 028.0 ,  

KT 0
0 298 ,  

deg/1004.1 3* KgJC  , 

degsec/107.1 6* mJK  , deg/1068.2 26 mN , 

deg/100.2 26
1 mN  

and stretch parameters are 
210

0 /105.0 mN , 
210

1 /105.0 mN , N9
0 10779.0   ,  

Nb 9
0 105.0  ,  md 01.0 . 

 A FORTRAN program has been developed 
for the solution of equation (24) to compute 
phase velocity c for different values of n by 
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using the relations )tan(tan   n  and 

)1( 2222  ii acm   
The phase velocity and attenuation coefficient 
of symmetric and skew-symmetric modes of 
wave propagation in the context of G-L theory 
of thermoelasticity have been computed for 
various values of wave number from 
dispersion equation (24) for stress free 
thermally insulated boundaries and have been 
represented graphically for different modes (n 
= 0 to n = 1) in Figs. 2 - 5. The solid curves 
correspond to thermomicrostretch elastic plate 
(MSTE), dotted curves refer to microstretch 
elastic plate (MSE) and broken-line curves 
correspond to micropolar thermoelastic plate 
(MTE). 
 
Phase velocity 
The phase velocities of higher modes of 
propagation, symmetric and skew-symmetric 
attain quite large values at vanishing wave 
number, which sharply slashes down to 
become steady and asymptotic to the reduced 
Rayleigh wave velocity with increasing wave 
number.  
For symmetric modes of wave propagation, 
we observe from Fig.2 that (a) The phase 
velocities of lowest mode of propagation 
become dispersionless i.e. remain constant 
with variation in wave number in case of 
micropolar thermoelastic plate (MTE) whereas 
the phase velocities of lowest mode of 
propagation become dispersionless i.e. remain 
constant with variation in wave number in 
case of micropolar thermoelastic plate (MTE) 
and microstretch elastic plate (MSE) for   
wave number 2.4  and 2.9 ; phase 
velocities are lowest for MSE and highest for 
MTE for wave number  2.1 ,   phase 
velocities are lowest  and highest for MSTE 
and MTE respectively for wave number lying 
between 1.2 and 2.2,  phase velocities are 
highest for MSE and lowest for MSTE for 
wave number 2.2  and 2.3  , and phase 
velocities are highest for MSTE  and lowest 
for MSE for wave number 2.3  and 2.4  
as evident from Fig.2  (b) for  n = 1, the phase 
velocity profiles in respect of MSTE,MSE and 
MTE  coincide. 

From Fig. 4, It is observed for skew-
symmetric modes of wave propagation that (i) 
for lowest mode n = 0, phase velocities are 
highest for MTE and lowest for MSTE For 
wave number 5.0 , phase velocities are 
lowest and highest for MSE and MTE 
respectively for wave number lying between 
0.5 and 0.8, phase velocities are highest for 
MSTE and lowest for MSE for wave number 

8.0  and 2.1 ,phase velocities are lowest 
and highest for MSE and MSTE respectively 
for wave number lying between 1.2 and 2.2, 
phase velocities are highest for MTE and 
lowest for MSE for wave number 2.2  and 

2.3 , phase velocity profiles for MSTE and 
MTE coincide and phase velocity are lowest in 
respect of MSE for wave number 2.3 . (ii) 
for n = 1, the phase velocity profiles in respect 
of MSTE and MTE coincide, phase velocity in 
MSE is more than MSTE and MTE for wave 
number 2.5 , phase velocity for MSE is less 
than in case of  MSTE and MTE for wave 
number 2.5 . 
 
Attenuation coefficients 
In general, wave number and phase velocity of 
the waves are complex quantities, therefore, 
the waves are attenuated in space. If we write  

 qisc 111                  …(26  

then iqK  1  , where  sK /1  and q 
are real numbers. This shows that s is the 
propagation speed and q is attenuation 
coefficient of waves.  Upon using (26) in the 
FORTRAN program developed for the 
solution of equation (24) to compute phase 
velocity c, attenuation coefficient q for 
different modes of wave propagation can be 
obtained. 
The attenuation coefficients of symmetric and 
skew-symmetric modes have been plotted in 
the context of thermomicrostretch elastic plate 
(MSTE), microstretch elastic plate (MSE) and  
micropolar thermoelastic plate (MTE) in Fig. 
3 and Fig. 5 respectively.  
(a) For lowest symmetric mode (n = 0) in 
respect of MSTE, the magnitude of attenuation 
coefficient has negligible variation with wave 
number in regions 2.22.0   and 2.92.4   , 
the magnitude of attenuation coefficient have 
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maxima upto 12.04 in region 2.42.0    at 
2.3 , (b) For first  symmetric mode (n = 1) 

in respect of MSTE, the attenuation coefficient 
has negligible variation with wave number in 
region 2.62.0   , the attenuation coefficient 
increases from .41 to 51.31 as wave number 
increases from 6.2 to 7.2,  the attenuation 
coefficient decreases from 51.31 to 20.06 as 
wave number increases from 7.2 to 8.2,  the 
attenuation coefficient increases from 20.06 to 
119.2 as wave number increases from 8.2 to 
9.2.© For lowest symmetric mode (n = 0) in 
respect of MSE, the magnitude of attenuation 
coefficient has negligible variation with wave 
number in regions 2.52.0   and 2.92.7   , 
the magnitude of attenuation coefficient have 
maxima upto 59.50 in region 2.72.5    at 

2.6  (d) For first  symmetric mode (n = 1) in 
respect of MSE, the magnitude of attenuation 
coefficient  is observed to be quite high for 
wave number  2.0  in region 2.12.0    ,the 
attenuation coefficient has negligible variation 
with wave number in region 2.42.1   , the 
magnitude of attenuation coefficient have 
maxima upto 64.46 in region 2.62.4    at 

2.5  ,the attenuation coefficient increases 
from .2411 to 55.71 as wave number increases 
from 6.2 to 7.2,  the attenuation coefficient 
decreases from 55.71 to 30.91 as wave number 
increases from 7.2 to 8.2,  the attenuation 
coefficient increases from 30.91 to 94.73 as 
wave number increases from 8.2 to 9.2.  (e) 
For lowest symmetric mode (n = 0) in respect 
of MTE, the magnitude of attenuation 
coefficient has negligible variation with wave 
number in regions 2.12.0   and 2.92.4   , 
the magnitude of attenuation coefficient 
attains values 7.613 and 9.525 at 2.2  and at 

2.3  respectively in region 2.42.1   (f) 
For first symmetric mode (n = 1) in respect of 
MTE, the attenuation coefficient has 
negligible variation with wave number in 
regions 2.42.0   and 2.72.6    the 
magnitude of attenuation coefficient shoots 
upto  165.4 at 2.5  in region 2.62.4    and 
attains high values 114.1 and 138.4 at 2.8  
and at 2.9  respectively in region 

2.92.7   . 

For skew-symmetric modes of wave 
propagation in case of MSTE, we observe that 
(i) for lowest mode (n = 0) the attenuation 
coefficient possesses nearly constant value in 
the region 2.22.0   , the magnitude of 
attenuation coefficient decreases to 12.92 at 

2.3  and increases to 71.74 at 2.4 and 
further decreases to 16.69 at 2.5  in the 
region 2.62.2   , the attenuation coefficient 
has negligible variation with wave number in 
region 2.92.6   (ii) for first   mode (n = 1)  
the attenuation coefficient has negligible 
variation with wave number in regions 

2.12.0   and  2.92.6   , the attenuation 
coefficient  attains values 13.66 and 8.533 at 

2.2 and 2.3 respectively in region 
2.32.1   , the magnitude of attenuation 

coefficient shoots upto  320.4 at 2.4 and 
decreases to 20.15 in region 2.62.3   .(iii) 
For lowest skew-symmetric mode (n = 0) in 
respect of MSE, the attenuation coefficient has 
negligible variation with wave number in 
region 2.92.0   (iv) For first  skew-
symmetric mode (n = 1) in respect of MSE, 
the attenuation coefficient  does not vary with 
wave number (v) For lowest skew-symmetric 
mode (n = 0) in respect of MTE, the 
magnitude of  attenuation coefficient  shoots 
from 89.86  at 2.0 to 343.6 at 2.1  and 
slashes to 15.36 at 2.2  in the region  

2.22.0   , the magnitude of attenuation 
coefficient attains values 10.79, 50.85 and 
26.15 at 2.3 , 2.4  and  2.5  
respectively in region 2.62.2   , the 
attenuation coefficient has negligible variation 
with wave number in regions 2.92.6   (vi) 
For first  skew-symmetric mode (n = 1) in 
respect of MTE, the attenuation coefficient has 
negligible variation with wave number in 
regions 2.12.0   and 2.92.6   , the 
magnitude of attenuation coefficient  have 
maximum value upto 53.28 in region 

2.62.1    at 2.5 . 
 
CONCLUSIONS 
 
(i)The dispersion of axisymmetric waves in 
thermomicrostretch elastic plate subjected to 
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stress free thermally insulated and isothermal 
boundary is studied in the context of Green 
and Lindsay (G-L) theory of thermoelasticity 
(ii) The secular equations for both symmetric 
and skew-symmetric vibration modes have 
been obtained (iii) At short wavelength limits, 
the secular equations for symmetric and skew-
symmetric waves in stress free thermally 
insulated and isothermal thermomicrostretch 
elastic plate reduce to Rayleigh surface wave 
frequency equations (iv) The phase velocities 
of higher modes of propagation, symmetric 
and skew-symmetric attain quite large values 
at vanishing wave number, which sharply 
slashes down to become steady and 
asymptotic to the reduced Rayleigh wave 
velocity with increasing wave number  
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Fig.1 Geometry of the problem
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Fig.2 Variation of phase velocity of symmetric modes of wave propagation
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Fig.3 Variation of attenuation coefficient of symmetric modes of wave propagat
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Fig.4 Variation of phase velocity of skew-symmetric modes of wave propagation
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Fig.5 Variation of attenuation coefficient of skew-symmetric modes of wave propagati

Wave number

0 1 2 3 4 5 6 7 8 9 10

A
tt

en
u

at
io

n
 c

o
ef

fi
ci

en
t

-50

0

50

100

150

200

250

300

350
MSTE(n = 0)

MSTE(n = 1)
MSE(n = 0)

MSE(n = 1)

MTE(n = 0)

MTE(n = 1)


